New insight on the Romito shelter (Calabria, southern Italy): the lithic production of the Mesolithic levels

Fabio Martini¹,²*, Domenico Lo Vetro¹,², Luca Timpanelli¹,²

¹ Università degli Studi di Firenze, Dipartimento di Storia, Archeologia, Geografia, Arte e Spettacolo (SAGAS), Archeologia preistorica, via S. Egidio 21, 50122 Firenze, Italy
² Museo e Istituto Fiorentino di Preistoria “P. Graziosi”, via S. Egidio 21, 50122 Firenze, Italy

Key words
- Mesolithic
- Sauveterrian
- lithic industries
- Calabria
- Italy

Parole chiave
- Mesolitico
- Sauveterriano
- industrie litiche
- Calabria
- Italia.

* Corresponding author: e-mail: fabio.martini@unifi.it

Summary
Romito shelter (Papasidero, Cosenza), set forward the cave of the same name, has been explored in the 1960s by P. Graziosi. During his archaeological research, Graziosi opened a large trench parallel to the rocky wall, between the two well-known engraved boulders below the shelter. Graziosi brought to light a stratigraphic sequence containing several phases related to the Upper Paleolithic and the Neolithic. During the recent archaeological research carried out by the University of Florence, new excavations in the shelter were undertaken. The new excavations, performed close to the 1960s trench, revealed a pre-Neolithic sequence that testifies the human presence at Romito also during the Early Holocene. The stratigraphic sequence contains some Mesolithic paleosurfaces overlaying an Upper Paleolithic deposit. Mesolithic stone assemblages are placed within the context of the Sauveterrian-like armature complex of the low Tyrrenian region.

Riassunto

Redazione: Giampaolo Dalmeri

pdf: http://www.muse.it/it/Editoria-Muse/Preistoria-Alpina/Pagine/PA/PA_48-2016.aspx

Introduction

Grotta del Romito is located in the Lao Valley, Northern Calabria (275 m asl) ca. 12 km from the Tyrrhenian Sea (Fig. 1). The area is fairly mountainous, with nearby peaks overpassing 2000 m. The site is at the foot of a rock cliff and is composed by a rock shelter and a cave. The western part of the cave and the rock shelter were connected during the Palaeolithic and Mesolithic to form a large living space.

During the latest archaeological researches at Grotta del Romito (since 2000), as part of a new research and valorisation project linked to Paolo Graziosi’s first excavations in the 1960’s (Martini et al. 2004; Martini & Lo Vetro 2011), excavations in the external deposit of the rockshelter (Fig. 2) have brought to light, beneath the Neolithic layers, a Sauveterrian sequence which lies above Final Epigravettian layers (Fig. 3) (Lopez Garcia et al. 2014). This Early Holocene phase was not detected during Graziosi’s researches and the lithic assemblages from the rockshelter are almost unpublished (Boscato et al. 1996).

The Mesolithic industries

The study of lithic assemblages from some layers of the Mesolithic deposit (levels 3, 3A, 3B, 3C, 3D, 4-spits 1 and 2) allowed obtaining some preliminary results. The lithic industries are grouped as follows:

- upper level 3 (3, 3A, 3B): 108 retouched tools
- lower level 3 (3C, 3D): 99 retouched tools, 9,747±65 uncal. BP
- upper level 4 (4-spits 1 a 2): 176 retouched tools

Underneath, the stratigraphic sequence includes Sauveterrian layers that follow the Epigravettian presence (level 5: 14C uncal. between 10.547±65 BP and 11.574±65 BP).
Raw material, technology

Petrographic analysis (Romagnoli et al. 2016) on both geological and archaeological samples indicates the use of three main lithological groups:

1. red and green radiolarites coming from Monte Sirino that were collected in form of pebbles at the Noce river deposits (15-20 km as the crow flies from the cave);
2. black flint, that were collected in the Lao river deposits, near the cave;
3. grey chert, some of which probably originating in the Monte Sirino area and mainly collected in detritus and in riverbeds.

Preliminary data from the technological study show no substantial differences in raw material procurement and exploitation along the Mesolithic sequence. Radiolarites are always predominant even if in the earliest phase a greater variability of raw material is attested (level 4).

All along the Sauveterrian sequence the main chaîne opératoire is almost the same. The lithic production is based on intense exploitation of small pebbles and blocks and, sometimes, large flakes, mainly aimed at producing micro- and hypermicroliths, lamellar flakes and wide micro- and hypermicroliths, all suitable for geometric microliths (crescents and triangles) and backed tools production.

Standardized core reduction methods are performed in order to obtain the greatest possible number of products from each core: unidirectional methods, both frontal and on-edge (Fig. 4, n. 3; Fig. 5 nn. 1-2), are often replaced at the end of the reduction sequence by bidirectional schemes to completely exploit the cores (most of the cores are abandoned at about 15-25 mm in size) (Fig. 4, n. 1). Few very small centripetal cores for hypermicro and microflakes production seem to belong to this final stage of exploitation (Fig. 4, n. 2; Fig. 5, n. 3).

Structural features and typology

Typological analysis of retouched tools was made according to G. Laplace’s Analytical Typology (Laplace 1964). For each phase the main typological and structural features are as follows:

- upper level 4 (spit 1 and 2) (Fig. 6, C): strong predominance of armatures (87% ca.), common tools category is scarce (12% ca.). The armatures are represented by crescents (23% ca.), total-backed points (15% ca.) and triangles (scalene and isosceles: 8% ca.); backed blades (6% ca.) and truncated backed tools (4% ca.) are scarcer. The backed tools fragments amount to 21% ca. The common tools mostly consist of truncations, especially oblique; each of the other typological groups does not surpass 2%.
- lower level 3 (3C-3D) (Fig. 6, B): decrease of armatures (68% ca.). The most characteristic types are: crescents (17% ca.), total-backed points (10% ca.) and triangles (8% ca.). All groups of the common tools category (30% ca.) increase slightly, except the truncations.
- upper level 3 (3, 3A, 3B) (Fig. 6, A): structural stability of the armatures (67% ca.). The crescents (13% ca.) continue to characterize the assemblage, associated with total-backed points (7% ca.), both types decrease as the triangles increase (8% ca.). The common tools category (33% ca.) maintain a structure homogeneous with that of the previous phase.

The three Sauveterrian phases identified at Romito show a quite standardized structural and stylistic physiognomy characterized by:

- very strong indexes of armatures, slightly decreasing along the sequence (from 87.5% to 67%);
- increase of common tools (from 12.5% to 33%);
- armatures mainly composed of crescents and triangles;
- scarce backed points and blades, truncated backed blades, all decrease along the sequence;
- presence of bilateral backed points (Sauveterre-like), never numerous and in decrease;
- presence of total-backed points often with convex edge, similar to crescents;
- scalene triangles decrease (from 6.8% to 3.7%) while isosceles increase (from 1.1% to 4.6%);

Fig. 3 - Riparo del Romito. Stratigraphic sequence. / Sequenza stratigrafica.
size of the armatures is mostly hypermicrolithic (up to 15mm); only in level 4 few armatures, stylistically similar to the Epigravettian types in morphology and typometry, are present (9.1% of the armatures: total backed points, backed blades, double truncated backed blades, crescents and a few fragments of indeterminate backed tools).

Relationship with the local Final Epigravettian lithic production

At the current state of research on the Late Upper Palaeolithic-Mesolithic Romito sequence, the problem remains open as to the possible phyletic link between the Sauveterrian of layers 4-3 and the local Epigravettian tradition (Martini et al. 2003 and 2007; Lo Vetro & Martini 2016). Between the two macro-phases both similarities, suggesting a direct derivation, and differences that have yet to be evaluated, can be observed.

References

Fig. 6 - Riparo del Romito. Sauveterrian lithic industry. A (Level 3 Top): 1 e 2-truncations; 3-4 total backed points; 5-8 crescents; 9-12 triangles; 13 abrupte. B (Level 3 Bottom): 14-17 total backed points; 18-total backed blade; 19-23 crescents; 24-26 triangles. C (Level 4 Top): 27-29 total backed points; 30-total backed blade; 31-34 crescents; 35-38 triangles (drawings by L. Baglioni). / Industria litica sauveterriana. A (Livello 3 Superiore): 1 e 2-troncature; 3-4 punte a dorso totale; 5-8 segmenti di cerchio; 9-12 triangoli; 13 scheggia a ritocco erto. B (Livello 3 Inferiore): 14-17 punte a dorso totale; 18-lama a dorso totale; 19-23 segmenti di cerchio; 24-26 triangoli. C (Livello 4 Sup.): 27-29 punte a dorso totale; 30-lama a dorso totale; 31-34 segmenti di cerchio; 35-38 triangoli (disegni L. Baglioni).

